ONBOARD TERRAIN CLASSIFICATION VIA STACKEDINTELLIGENT METASURFACE-DIFFRACTIVE DEEPNEURAL NETWORKS FROM SAR LEVEL-0 RAW DATA

Mengbing Liu, Xin Li, Jiancheng An, and Chau Yuen

School of Electrical and Electronics Engineering (EEE), Nanyang Technological University, Singapore

Motivation & Challenges

Figure 1: Comparison of processing progress.

What is SIM-D²NN? 0

How do we design the SIM-D²NN to achieve real-time terrain classification?

- ◆ How to optimize the phase configurations at each metasurface layer?
- ◆ How to deduce the classification result from the received signal at the terrain station?
- How to tackle the noisy level-0 raw I/Q data¹?

¹The S1 level-0 raw data used for training is downloaded from the Copernicus browser (https://browser.dataspace.copernicus.eu)

Figure 2: The overview of the satellite-to-ground transmission system.

- ◆ Multiple-layer stacked intelligent metasurface; (Mimic the structure of DNN)
- Signal transmitted from the satellite to the station via SIM; (Feedforward in DNN)
- The phase configurations θ of meta-atoms at each layer; (The learnable weights in DNN)

- ◆ Offload the computation (heavily rely on digital backends) into the natural signal propagation in wave domain;
- ◆ Relieve the huge demand of transmission resources, such as the bandwidth and the energy consumption;
- ◆ Achieve real-time, in-orbit decision-making for the terrain classification task in remote sensing applications.

Table 1: C	Comparison	of different	scenarios o	n the S1	level-0 raw l	O dataset.
	Joinparison	or unrerent	Section 105 0			Y uninser.

	S1 Level-0 Raw IQ Dataset					
Adiation Setting	Precision (%) \uparrow	Recall (%) \uparrow	F1 Score (%) †	Overall Accuracy (%) \uparrow		
SIM-D ² NN ($L = 1$)	<u>87.63</u>	91.27	89.41	83.44		
$\text{SIM-D}^2\text{NN} (L = 6)$	87.21	92.87	89.95	88.15		
SIM-D ² NN ($S = 5\%$)	87.84	91.49	<u>89.62</u>	85.75		
SIM-D ² NN ($S = 20\%$)	91.56	93.98	92.76	89.31		
SIM-D ² NN ($P_t = 5 \text{ dBm}$)	86.14	92.20	89.07	80.29		
SIM-D ² NN (No phase rotation)	62.09	<u>78.54</u>	69.35	54.97		
SIM-D ² NN (Baseline)	<u>90.54</u>	<u>90.67</u>	90.60	<u>87.83</u>		
Digital DNN	94.78	97.14	95.95	92.91		
Note: Our baseline SIM-D ² NN uses $L = 4$ layers, $P_t = 20$ dBm, and $S = 10\%$.						

- Increasing the number of Metasurface Layers from L=1 to L=4, leading to an increase in precision score (87.63% to 90.54%);
- Omitting the **phase rotation** augmentation leads to a significant drop in recall score (78.54% to 90.67%);

Results & Analysis

(a) SIM-D²NN (No phase rotation²)

(d) Gound Truth Label (c) Digital DNN Figure 3: Comparison of the visualization results under different methods.

- ◆ Form (a), the inclusion of phase rotation proves essential for effectively learning from the IQ raw data;
- From (b) and (c), the analog SIM- D^2NN achieves similar results to the digital DNN.

◆ Sampling more training samples may achieve higher performance, such as the F1 score (89.62% to 92.76%);

• Reducing transmit power P_t from 20 dBm to 5 dBm degrades accuracy from 87.83% to 80.29%.

 2 The phase rotation is adopted for data augmentation, which can be modulated on the chip naturally as the carrier waves pass through the input layer.

Conclusion

- Develop a multi-layer, SIM-D²NN designed to process S1 raw IQ data for terrain classification;
- By harnessing the inherent properties of wave propagation through multiple layers to achieve high performance as around 90%;
- Reducing the dependence on digital processing backends and lowering the costs associated with data transmission;
- Offering faster, more efficient, and sustainable solutions for remoting sensing applications.

Path Forward

- ◆ Nonlinear Function: Relying on specialized metasurface hardware, which is constrained to linear operations and limits the SIM-D2NN from performing critical nonlinear functions.
- ◆ Time-varying wireless environment: While we consider the noise and phase modulus constraints, real-word communication links might introduce more complex distortions, such as time-varying channels, imperfect channel information, and dynamic path loss.
- Comprehensive remote sensing tasks: Future work will try to expand on more remote sensing tasks and make the SIM-D2NN more generalized capability.

Project Website

mengbing001@e.ntu.edu.sg; xin019@e.ntu.edu.sg; **Contact Person**